Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immun Inflamm Dis ; 12(4): e1252, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652015

RESUMEN

We developed pulmonary emphysema and a type 2 airway inflammation overlap mouse model. The bronchoalveolar lavage (BAL) interleukin 13 (IL-13), IL-4, and IL-5 levels in the overlap model were higher than in the pulmonary emphysema model and lower than in the type 2 airway inflammation model, but IL-33 level in the lung was higher than in other models. IL-33 and interferon-γ (IFNγ) in lungs may control the severity of a type 2 airway inflammation in lung.


Asunto(s)
Modelos Animales de Enfermedad , Interleucina-33 , Enfisema Pulmonar , Animales , Interleucina-33/metabolismo , Ratones , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Enfisema Pulmonar/etiología , Enfisema Pulmonar/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones Endogámicos C57BL
2.
J Clin Med ; 13(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256481

RESUMEN

Bronchoscopy is an invasive procedure, and patient coughing during examination has been reported to cause patient distress. This study aimed to clarify the relationship between cough severity and diagnostic yield of endobronchial ultrasonography with guide sheath transbronchial biopsy (EBUS-GS-TBB). Data of patients who underwent bronchoscopy at Kyorin University Hospital between April 2019 and March 2022 were retrospectively evaluated. Bronchoscopists assessed the cough severity upon completion of the procedure using a four-point cough scale. Cough severity was included as a predictive factor along with those reportedly involved in bronchoscopic diagnosis, and their impact on diagnostic yield was evaluated. Predictors of cough severity were also examined. A total of 275 patients were enrolled in this study. In the multivariate analysis, the diagnostic group (n = 213) had significantly more 'within' radial endobronchial ultrasound findings (odds ratio [OR] 5.900, p < 0.001), a lower cough score (cough score per point; OR 0.455, p < 0.001), and fewer bronchial generations to target lesion(s) (OR 0.686, p < 0.001) than the non-diagnostic group (n = 62). The predictive factors for severe cough include the absence of virtual bronchoscopic navigation (VBN) and prolonged examination time. Decreased cough severity was a positive predictive factor for successful EBUS-GS-TBB, which may be controlled using VBN and awareness of the procedural duration.

3.
Microbiol Spectr ; 11(4): e0260622, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37409937

RESUMEN

Human respiratory syncytial viruses (HRSVs) are divided into subgroups A and B, which are further divided based on the nucleotide sequence of the second hypervariable region (HVR) of the attachment glycoprotein (G) gene. Understanding the molecular diversity of HRSV before and during the coronavirus disease 2019 (COVID-19) pandemic can provide insights into the effects of the pandemic on HRSV dissemination and guide vaccine development. Here, we analyzed HRSVs isolated in Fukushima Prefecture from September 2017 to December 2021. Specimens from pediatric patients were collected at two medical institutions in neighboring cities. A phylogenetic tree based on the second HVR nucleotide sequences was constructed using the Bayesian Markov chain Monte Carlo method. HRSV-A (ON1 genotype) and HRSV-B (BA9 genotype) were detected in 183 and 108 specimens, respectively. There were differences in the number of HRSV strains within clusters prevalent at the same time between the two hospitals. The genetic characteristics of HRSVs in 2021 after the COVID-19 outbreak were similar to those in 2019. HRSVs within a cluster may circulate within a region for several years, causing an epidemic cycle. Our findings add to the existing knowledge of the molecular epidemiology of HRSV in Japan. IMPORTANCE Understanding the molecular diversity of human respiratory syncytial viruses during pandemics caused by different viruses can provide insights that can guide public health decisions and vaccine development.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Humanos , Lactante , Teorema de Bayes , Ciudades/epidemiología , COVID-19/epidemiología , Pueblos del Este de Asia , Variación Genética , Genotipo , Pandemias , Filogenia , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/genética , Japón
5.
Heliyon ; 6(5): e03835, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32395646

RESUMEN

Norovirus GII.3 has been suggested to be a prevalent genotype in patients with acute gastroenteritis. However, the genetic properties of the VP1 region encoding the major GII.3 antigen remain unclear. Here, we performed molecular evolutionary analyses of the GII.3 VP1 region detected in various countries. We performed time-scaled phylogenetic analyses, selective pressure analyses, phylogenetic distance analyses, and conformational epitope analyses. The time-scaled phylogenetic tree showed that an ancestor of the GII.3 VP1 region diverged from the common ancestors of the GII.6, GII.11, GII.18, and GII.19 approximately 70 years ago with relatively low divergence. The evolutionary rate of the GII.3 VP1 region was rapid (4.82 × 10-3 substitutions/site/year). Furthermore, one positive site and many negative selection sites were observed in the capsid protein. These results suggest that the GII.3 VP1 region rapidly evolved with antigenic variations.

6.
Virus Res ; 277: 197824, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31783038

RESUMEN

Human respirovirus 3 (HRV3) is a major causative agent of acute respiratory infections in humans. HRV3 can manifest as a recurrent infection, although exactly how is not known. In the present study, we conducted detailed molecular evolutionary analyses of the major antigen-coding hemagglutinin-neuraminidase (HN) gene of this virus detected/isolated in various countries. We performed analyses of time-scaled evolution, similarity, selective pressure, phylodynamics, and conformational epitope prediction by mapping to HN protein models. In this way, we estimated that a common ancestor of the HN gene of HRV3 and bovine respirovirus 3 diverged around 1815 and formed many lineages in the phylogenetic tree. The evolutionary rates of the HN gene were 1.1 × 10-3 substitutions/site/year, although the majority of these substitutions were synonymous. Some positive and many negative selection sites were predicted in the HN protein. Phylodynamic fluctuations of the gene were observed, and these were different in each lineage. Furthermore, most of the predicted B cell epitopes did not correspond to the neutralization-related mouse monoclonal antibody binding sites. The lack of a link between the conformational epitopes and neutralization sites may explain the naturally occurring HRV3 reinfection.


Asunto(s)
Evolución Molecular , Proteína HN/genética , Virus de la Parainfluenza 3 Humana/genética , Filogenia , Teorema de Bayes , Biología Computacional , Mapeo Epitopo , Epítopos/genética , Proteína HN/química , Humanos , Cadenas de Markov , Método de Montecarlo
7.
Front Microbiol ; 10: 2189, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611853

RESUMEN

Human norovirus (HuNoV) GII.P17-GII.17 (Kawasaki2014 variant) reportedly emerged in 2014 and caused gastroenteritis outbreaks worldwide. To clarify the evolution of both VP1 and RNA-dependent RNA polymerase (RdRp) regions of GII.P17-GII.17, we analyzed both global and novel Japanese strains detected during 2013-2017. Time-scaled phylogenetic trees revealed that the ancestral GII.17 VP1 region diverged around 1949, while the ancestral GII.P17 RdRp region diverged around 2010. The evolutionary rates of the VP1 and RdRp regions were estimated at ~2.7 × 10-3 and ~2.3 × 10-3 substitutions/site/year, respectively. The phylogenetic distances of the VP1 region exhibited no overlaps between intra-cluster and inter-cluster peaks in the GII.17 strains, whereas those of the RdRp region exhibited a unimodal distribution in the GII.P17 strains. Conformational epitope positions in the VP1 protein of the GII.P17-GII.17 strains were similar, although some substitutions, insertions and deletions had occurred. Strains belonging to the same cluster also harbored substitutions around the binding sites for the histo-blood group antigens of the VP1 protein. Moreover, some amino acid substitutions were estimated to be near the interface between monomers and the active site of the RdRp protein. These results suggest that the GII.P17-GII.17 virus has produced variants with the potential to alter viral antigenicity, host-binding capability, and replication property over the past 10 years.

8.
Gut Pathog ; 11: 26, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143245

RESUMEN

BACKGROUND: Human norovirus (HuNoV) is the major cause of viral acute gastroenteritis for all age groups in various countries. HuNoV GII in particular accounted for the majority of norovirus outbreaks, among which GII.4 caused repeated outbreaks for a long time. Besides GII.4, other norovirus genotypes, GII.2, GII.6, and GII.17, have also been prevalent in various contexts in recent years, but few detailed epidemiological studies of them have been performed and are poorly understood. We thus conducted an epidemiological analysis of HuNoV GII in Ibaraki Prefecture, Japan, by performing surveillance in the six seasons from September 2012 to August 2018. RESULTS: HuNoV GI occurred almost sporadically for all genotypes; however, each genotype of GII exhibited its typical epidemiological characteristics. Although the number of outbreaks of GII.4 decreased season by season, it reemerged in 2017/2018 season. The timing of the epidemic peak in terms of number of cases for GII.17 differed from that for the other genotypes. The patients age with GII.2 and GII.6 were younger and outbreak of GII.17 occurred frequently as food poisoning. Namely, the primarily infected outbreak group differed for each genotype of HuNoV GII. Moreover, the viral load of patients differed according to the genotype. CONCLUSIONS: Various HuNoV genotypes including GII.2, GII.4, GII.6, and GII.17 were shown to be associated with various types of outbreak sites (at childcare and educational facilities, involving cases of food poisoning, and at elderly nursing homes) in this study. These genotypes emerged in recent years, and their prevalence patterns differed from each other. Moreover, differences in outbreak sites and viral load of patients among the genotypes were identified.

9.
Front Microbiol ; 10: 3054, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010105

RESUMEN

To elucidate the evolution of human respirovirus 3 (HRV3), we performed detailed genetic analyses of the F gene (full-length) detected from hundreds of HRV3 strains obtained from various geographic regions. First, we performed time-scaled evolutionary analyses using the Bayesian Markov chain Monte Carlo method. Then, we performed analyses of phylodynamics, similarity, phylogenetic distance, selective pressure, and conformational B-cell epitope with the F-protein structural analyses. Time-scaled phylogenetic tree showed that the common ancestor of HRV3 and bovine respirovirus 3 diverged over 300 years ago and subdivided it into three major clusters and four subclusters during the most recent 100 years. The overall evolutionary rate was approximately 10-3 substitutions/site/year. Indigenous similarity was seen in the present strains, and the mean phylogenetic distance were 0.033. Many negative selection sites were seen in the ectodomain. The conformational epitopes did not correspond to the neutralizing antibody binding sites. These results suggest that the HRV3 F gene is relatively conserved and restricted in this diversity to preserve the protein function, although these strains form many branches on the phylogenetic tree. Furthermore, HRV3 reinfection may be responsible for discordances between the conformational epitopes and the neutralizing antibody binding sites of the F protein. These findings contribute to a better understanding of HRV3 virology.

10.
Front Microbiol ; 10: 2991, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31993031

RESUMEN

Noroviruses are a major cause of viral epidemic gastroenteritis in humans worldwide. The protease (Pro) encoded in open reading frame 1 (ORF1) is an essential enzyme for proteolysis of the viral polyprotein. Although there are some reports regarding the evolutionary analysis of norovirus GII-encoding genes, there are few reports focused on the Pro region. We analyzed the molecular evolution of the Pro region of norovirus GII using bioinformatics approaches. A time-scaled phylogenetic tree of the Pro region constructed using a Bayesian Markov chain Monte Carlo method indicated that the common ancestor of GII diverged from GIV around 1680 CE [95% highest posterior density (HPD), 1607-1749]. The GII Pro region emerged around 1752 CE (95%HPD, 1707-1794), forming three further lineages. The evolutionary rate of GII Pro region was estimated at more than 10-3 substitutions/site/year. The distribution of the phylogenetic distances of each genotype differed, and showed genetic diversity. Mapping of the negative selection and substitution sites of the Pro structure showed that the substitution sites in the Pro protein were mostly produced under neutral selection in positions structurally adjacent to the active sites for proteolysis, whereas negative selection was observed in residues distant from the active sites. The phylodynamics of GII.P4, GII.P7, GII.P16, GII.P21, and GII.P31 indicated that their effective population sizes increased during the period from 2005 to 2016 and the increase in population size was almost consistent with the collection year of these genotypes. These results suggest that the Pro region of the norovirus GII evolved rapidly, but under no positive selection, with a high genetic divergence, similar to that of the RNA-dependent RNA polymerase (RdRp) region and the VP1 region of noroviruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...